PLS Matematica - Seminari e Laboratori 2024-2025

14 GENNAIO:
8:30 - Realtà, modelli matematici ed epidemie – Prof.ssa Rossana Vermiglio (2 ore)
10:30 - Finanza moderna e matematica – Prof. Andrea Molent (2 ore)

28 GENNAIO:
8:30 - 'b2-4ac' – Prof. Pietro Corvaja (2 ore)
10:30 - Numeri interi, razionali, reali e paradossi di Zenone – Prof. Gianluca Gorni (2 ore)

4 FEBBRAIO:
8:30 - L'astronomia di Tolomeo – Prof. Paolo Bussotti (2 ore)
10:30 - Equazioni diofantee – Prof.ssa Anna Giordano Bruno (2 ore)

25 FEBBRAIO - SEDE TOMADINI
8:30 - Geometria della fisica e fisica della geometria – Prof. Sebastiano Sonego (2 ore)
10: 30 - Giochi d’azzardo e lotterie: miti, illusioni e la dura realtà – Prof. Giuseppe Lancia (2 ore)

Indice

  1. Laboratorio sull’Infinito – Prof. Alberto Marcone (4 ore)
  2. Equazioni lineari e matrici: la matematica in rete– Prof. Dimitri Breda (8 ore)
  3. Tolomeo astronomo e geografo – Prof. Paolo Bussotti (8 ore)
  4. Costruzioni con riga e compasso – Prof.ssa Giovanna D'Agostino (6 ore)
  5. La matematica di Dobble – Prof. Stefano Urbinati (6 ore)

Laboratorio sull’Infinito

Prof. Vincenzo Dimonte
4 ore

Gli insiemi con infiniti elementi si possono confrontare stabilendo se uno è più grande dell’altro, come nel caso degli insiemi finiti? Possiamo trattare l’infinito o gli infiniti come fossero dei numeri e sommarli o moltiplicarli fra di loro? I paradossi dell’infinito implicano davvero contraddizioni? Queste domande hanno posto una sfida non banale ai matematici dei secoli scorsi e solo agli inizi del ‘900 hanno ottenuto una risposta soddisfacente. In questo seminario introdurremo il concetto di infinito da un punto di vista matematico.

Percorreremo velocemente la sua storia e come i matematici siano riusciti a risolvere i problemi che il concetto di infinito ha sempre portato con se.

Al termine del laboratorio ci affacceremo su alcuni problemi che guidano la ricerca in teoria degli insiemi nel XXI secolo.

Il laboratorio consiste in una conferenza di avvio, esercitazioni delle classi con i loro docenti (verrà dato del materiale guida per le esercitazioni), e una conferenza conclusiva.


Equazioni lineari e matrici: la matematica in rete

Prof. Dimitri Breda
8 ore

Partendo da semplici equazioni lineari, sono sviluppati gli aspetti sia algebrici che geometrici riguardanti la risoluzione dei sistemi lineari, gettando prima le basi del calcolo vettoriale e matriciale ed investigandone poi le implicazioni nel campo delle trasformazioni lineari nel piano. Fatti propri tali strumenti, si esplora la struttura matematica dell’algoritmo Pagerank di Google. Si analizzano e sperimentano infine quegli strumenti propri dell’analisi numerica che ne permettono l’implementazione efficiente, in particolare il metodo delle potenze per il calcolo dell’autovalore dominante.

Come strumento informatico di supporto si utilizza il software Matlab attraverso il quale si produce un codice completo per il calcolo del Pagerank. Il codice è testato sia su esempi di web accademici che reali. L’attività è preceduta da un seminario introduttivo (“Scusi prof…ma a cosa servono le equazioni?!”)


Tolomeo astronomo e geografo

Prof. Paolo Bussotti
8 ore

La geografia di Tolomeo: Il seminario del Prof. Gorni inizia con una breve storia della geografia antica, per concentrarsi poi sull’opera geografica di Tolomeo. Viene in particolare spiegata in dettaglio la sorprendente e controversa tesi del Prof. Lucio Russo, secondo cui nell’opera di Tolomeo si nasconde la prova matematica che gli Antichi conoscevano l’America.

L’astronomia di Tolomeo: Il Prof. Bussotti tiene un seminario su fondamenti dell’astronomia tolemaica, coi seguenti argomenti: i moti apparenti della volta celeste e le loro periodicità (sole, stelle fisse, pianeti); l’anomalia in velocità e il moto retrogrado; le teorie di Apollonio, Ipparco e Tolomeo, il problema del geocentrismo e il passaggio all’eliocentrismo in epoca moderna.

L’astrolabio: Il Prof. Bussotti tiene una conferenza sulla storia e la struttura dell’astrolabio, seguita da un laboratorio pratico: la costruzione di astrolabi in cartone e plastica con materiale fornito dal docente. Se il meteo è favorevole si può fare una misura pratica di latitudine usando l’ombra di un bastone, oppure un’esercitazione di uso di un astrolabio vero.

Proposte di ulteriori laboratori fra cui scegliere: In collaborazione con un docente di latino o greco si possono incaricare gli studenti di individuare le località moderne corrispondenti a luoghi elencati da Tolomeo, sfruttando anche la ricerca su internet e strumenti come GoogleEarth, confrontando poi le coordinate. Usando strumenti informatici (un foglio elettronico può bastare) si possono trovare e visualizzare le rette di regressione per il confronto fra le coordinate di Tolomeo e quelle moderne (i dati grezzi saranno forniti a richiesta dal Prof. Gorni). Usando strumenti online si possono cercare i parametri che sovrappongono le località di Tolomeo su quelle moderne.

Bibliografia: Lucio Russo, L’America Dimenticata, Mondadori Università (2013).


Costruzioni con riga e compasso

Prof.ssa Giovanna D'Agostino
6 ore

Nell’antica Grecia la matematica aveva in gran parte un aspetto costruttivo e le costruzioni preferite erano quelle che si possono realizzare utilizzando solo una riga ed un compasso. I greci scoprirono che alcune figure geometriche sono costruibili con riga e compasso (più o meno facilmente) mentre altre (realizzare un cubo di volume doppio rispetto a quello di un cubo di spigolo dato o trisecare un angolo di 60 gradi) sembravano sfuggire a questo tipo di esercizio.

Sarà necessario attendere quasi duemila anni, grazie allo sviluppo di una nuova disciplina che iniziava a riscuotere i primi successi – l’algebra – prima di capire che alcune costruzioni relativamente semplici da descrivere sono impossibili da ottenere con riga e compasso.

Nel laboratorio, con l’aiuto di strumenti virtuali costruiti tramite il software di geometria dinamica GeoGebra, realizzeremo varie costruzioni con riga e compasso, aiutandoci con le proprietà della geometria euclidea.

Il laboratorio è rivolto a studenti di classi seconde o terze, che abbiano svolto il programma di geometria piana euclidea. Nel caso delle classi seconde è previsto un seminario storico-introduttivo sulle dimostrazioni di impossibilità e sul fecondo scambio fra algebra e geometria. Nel caso delle cassi terze al seminario introduttivo viene aggiunto anche un seminario conclusivo sulla risoluzione delle equazioni algebriche.


La matematica di Dobble

prof. Stefano Urbinati
6 ore

Dobble è un popolare gioco di società che appassiona grandi e piccoli. Ci sono moltissime varianti di gioco ed è possibile giocare anche in due. La peculiarità di questo gioco è quella di essere composta da 55 carte, ognuna raffigurante una serie di simboli o disegni, in modo che ogni coppia di carte abbia sempre un simbolo in comune (e unico). Questa proprietà sarà la scusa per introdurre gli studenti ad un primo concetto veramente astratto, lo spazio proiettivo su un campo finito.

In un primo seminario si introdurrà il gioco e come primo strumento si parlerà di aritmetica finita, introducendo la matematica dell’orologio in maniera molto elementare. In un secondo seminario verrà introdotto il concetto di spazio proiettivo, cercando di focalizzarsi solamente sul caso di dimensione 2 e facendo lavorare gli studenti con delle proiezioni sulla calotta sferica.

Nell’ultimo incontro si unificheranno i concetti, andando a costruire prima un piano cartesiano su di un campo finito, giocando quindi con le equazioni delle rette che diventeranno molto strane, e poi utilizzare questa nuova costruzione per ricostruire il nostro piano proiettivo su un campo finito, partendo dall’esempio del piano di Fano. A questo punto si spiegherà la connessione con il gioco e come le carte vengano determinate seguendo questo filo logico.

Indice

  1. Laboratorio sull’Infinito – Prof. Alberto Marcone (4 ore)
  2. Tolomeo astronomo e geografo – Prof. Paolo Bussotti (8 ore)
  3. Costruzioni con riga e compasso – Prof.ssa Giovanna D'Agostino (8 ore)
  4. La matematica di Dobble – Prof. Stefano Urbinati (6 ore)
  5. Equazioni non lineari: dalla bisezione ai frattali di Newton – Prof. Dimitri Breda (8 ore)
  6. Equazioni lineari e matrici: la matematica in rete – Prof. Dimitri Breda (8 ore)
  7. Geometrie non Euclidee – Prof. Sebastiano Sonego (8 ore)
  8. Le scienze della vela – Prof. Lorenzo Freddi (15 ore)
  9. Realtà e modelli matematici – Prof.ssa Rossana Vermiglio (10 ore)
  10. Modelli di programmazione lineare intera per problemi di decisione – Prof.ssa Franca Rinaldi (4 ore)
  11. Equazioni algebriche di terzo grado – Prof. Raffaele Di Santo (6 ore)
  12. L’insieme di Cantor – Prof. Raffaele Di Santo (8 ore)
  13. Il concetto di buco nero – Dott. Daniele Pranzetti (6 ore)
  14. World Logic Day - 14 gennaio 2025 – Prof.ssa Giovanna D'Agostino (4 ore)

Laboratorio sull’Infinito

Prof. Alberto Marcone
4 ore

Gli insiemi con infiniti elementi si possono confrontare stabilendo se uno è più grande dell’altro, come nel caso degli insiemi finiti? Possiamo trattare l’infinito o gli infiniti come fossero dei numeri e sommarli o moltiplicarli fra di loro? I paradossi dell’infinito implicano davvero contraddizioni? Queste domande hanno posto una sfida non banale ai matematici dei secoli scorsi e solo agli inizi del ‘900 hanno ottenuto una risposta soddisfacente.

In questo seminario introdurremo il concetto di infinito da un punto di vista matematico. Percorreremo velocemente la sua storia e come i matematici siano riusciti a risolvere i problemi che il concetto di infinito ha sempre portato con se.

Al termine del laboratorio ci affacceremo su alcuni problemi che guidano la ricerca in teoria degli insiemi nel XXI secolo.


Tolomeo astronomo e geografo

Prof. Paolo Bussotti
8 ore

La geografia di Tolomeo: Il seminario del Prof. Gorni inizia con una breve storia della geografia antica, per concentrarsi poi sull’opera geografica di Tolomeo. Viene in particolare spiegata in dettaglio la sorprendente e controversa tesi del Prof. Lucio Russo, secondo cui nell’opera di Tolomeo si nasconde la prova matematica che gli Antichi conoscevano l’America.

L’astronomia di Tolomeo: Il Prof. Bussotti tiene un seminario su fondamenti dell’astronomia tolemaica, coi seguenti argomenti: i moti apparenti della volta celeste e le loro periodicità (sole, stelle fisse, pianeti); l’anomalia in velocità e il moto retrogrado; le teorie di Apollonio, Ipparco e Tolomeo, il problema del geocentrismo e il passaggio all’eliocentrismo in epoca moderna.

L’astrolabio: Il Prof. Bussotti tiene una conferenza sulla storia e la struttura dell’astrolabio, seguita da un laboratorio pratico: la costruzione di astrolabi in cartone e plastica con materiale fornito dal docente. Se il meteo è favorevole si può fare una misura pratica di latitudine usando l’ombra di un bastone, oppure un’esercitazione di uso di un astrolabio vero.

Proposte di ulteriori laboratori fra cui scegliere: In collaborazione con un docente di latino o greco si possono incaricare gli studenti di individuare le località moderne corrispondenti a luoghi elencati da Tolomeo, sfruttando anche la ricerca su internet e strumenti come GoogleEarth, confrontando poi le coordinate. Usando strumenti informatici (un foglio elettronico può bastare) si possono trovare e visualizzare le rette di regressione per il confronto fra le coordinate di Tolomeo e quelle moderne (i dati grezzi saranno forniti a richiesta dal Prof. Gorni). Usando strumenti online si possono cercare i parametri che sovrappongono le località di Tolomeo su quelle moderne.

Bibliografia: Lucio Russo, L’America Dimenticata, Mondadori Università (2013).


Costruzioni con riga e compasso

Prof.ssa Giovanna D'Agostino
8 ore

Nell’antica Grecia la matematica aveva in gran parte un aspetto costruttivo e le costruzioni preferite erano quelle che si possono realizzare utilizzando solo una riga ed un compasso. I greci scoprirono che alcune figure geometriche sono costruibili con riga e compasso (più o meno facilmente) mentre altre (realizzare un cubo di volume doppio rispetto a quello di un cubo di spigolo dato o trisecare un angolo di 60 gradi) sembravano sfuggire a questo tipo di esercizio.

Sarà necessario attendere quasi duemila anni, grazie allo sviluppo di una nuova disciplina che iniziava a riscuotere i primi successi – l’algebra – prima di capire che alcune costruzioni relativamente semplici da descrivere sono impossibili da ottenere con riga e compasso.

Nel laboratorio, con l’aiuto di strumenti virtuali costruiti tramite il software di geometria dinamica GeoGebra, realizzeremo varie costruzioni con riga e compasso, aiutandoci con le proprietà della geometria euclidea.

Il laboratorio è rivolto a studenti di classi seconde o terze, che abbiano svolto il programma di geometria piana euclidea. Nel caso delle classi seconde è previsto un seminario storico-introduttivo sulle dimostrazioni di impossibilità e sul fecondo scambio fra algebra e geometria. Nel caso delle cassi terze al seminario introduttivo viene aggiunto anche un seminario conclusivo sulla risoluzione delle equazioni algebriche.


La matematica di Dobble

Prof. Stefano Urbinati
6 ore

Dobble è un popolare gioco di società che appassiona grandi e piccoli. Ci sono moltissime varianti di gioco ed è possibile giocare anche in due. La peculiarità di questo gioco è quella di essere composta da 55 carte, ognuna raffigurante una serie di simboli o disegni, in modo che ogni coppia di carte abbia sempre un simbolo in comune (e unico). Questa proprietà sarà la scusa per introdurre gli studenti ad un primo concetto veramente astratto, lo spazio proiettivo su un campo finito.

In un primo seminario si introdurrà il gioco e come primo strumento si parlerà di aritmetica finita, introducendo la matematica dell’orologio in maniera molto elementare. In un secondo seminario verrà introdotto il concetto di spazio proiettivo, cercando di focalizzarsi solamente sul caso di dimensione 2 e facendo lavorare gli studenti con delle proiezioni sulla calotta sferica.

Nell’ultimo incontro si unificheranno i concetti, andando a costruire prima un piano cartesiano su di un campo finito, giocando quindi con le equazioni delle rette che diventeranno molto strane, e poi utilizzare questa nuova costruzione per ricostruire il nostro piano proiettivo su un campo finito, partendo dall’esempio del piano di Fano.

A questo punto si spiegherà la connessione con il gioco e come le carte vengano determinate seguendo questo filo logico.


Equazioni non lineari: dalla bisezione ai frattali di Newton

Prof. Dimitri Breda
8 ore

L’argomento protagonista è la ricerca degli zeri di una funzione reale di variabile reale. Analizzeremo i metodi computazionali principali per l’approssimazione degli zeri, ovvero il metodo di bisezione ed il metodo di Newton. Una volta “digeriti” gli aspetti principali restringeremo lo studio al caso delle radici dei polinomi algebrici, partendo dalle classiche formule risolutive esatte e arrivando all’adattamento del metodo di Newton, passando attraverso la regola di Ruffini ed il metodo di Horner. Alla fine affronteremo un aspetto particolarmente delicato quale la scelta del valore iniziale per generare le approssimazioni. Lo studio di questo problema porterà in modo naturale ai cosiddetti frattali di Newton.

Il laboratorio è preceduto dalla conferenza ‘…ma quanto vale radice di 5?’ tenuta, presso gli Istituti aderenti e allo scopo di introdurre gli alunni alle tematiche trattate, dal docente universitario di riferimento. Esso continua poi con una fase preliminare di preparazione dei requisiti, condotta dagli insegnanti coinvolti presso i relativi Istituti. Si giunge quindi allo stage degli alunni presso i laboratori del Dipartimento di Scienze Matematiche, Informatiche e Fisiche, dove vengono impartite le nozioni base di Matlab e si procede all’implementazione dei codici e all’ottenimento dei frattali. Possono poi seguire opportune fasi di approfondimento e verifica.

Con un po’ di pazienza, e guidati dal motore principe della ricerca e delle innovazioni scientifiche e, in genere, culturali – la curiosità – alla fine di quest’esperienza si avrà una visione più ampia del problema di determinare le soluzioni di equazioni e la scomposizione di polinomi. Certo non pretenderemo di coglierne a pieno tutte le proprietà, ma per questo c’è sempre l’opportunità di iscriversi al Corso di Laurea in matematica!


Equazioni lineari e matrici: la matematica in rete

Prof. Dimitri Breda
8 ore

Partendo da semplici equazioni lineari, sono sviluppati gli aspetti sia algebrici che geometrici riguardanti la risoluzione dei sistemi lineari, gettando prima le basi del calcolo vettoriale e matriciale ed investigandone poi le implicazioni nel campo delle trasformazioni lineari nel piano. Fatti propri tali strumenti, si esplora la struttura matematica dell’algoritmo Pagerank di Google. Si analizzano e sperimentano infine quegli strumenti propri dell’analisi numerica che ne permettono l’implementazione efficiente, in particolare il metodo delle potenze per il calcolo dell’autovalore dominante. Come strumento informatico di supporto si utilizza il software Matlab attraverso il quale si produce un codice completo per il calcolo del Pagerank. Il codice è testato sia su esempi di web accademici che reali. L’attività è preceduta da un seminario introduttivo (“Scusi prof…ma a cosa servono le equazioni?!”)


Geometrie non Euclidee

Prof. Sebastiano Sonego
8 ore

Nel laboratorio esploreremo l’evolversi nel tempo dell’idea di geometria e come questa venga radicalmente rinnovata ad un certo punto della sua storia, quando, non prima di aver superato molte resistenze, una visione “ingenua” viene soppiantata da una più consapevole. Il laboratorio è introdotto e concluso da una serie di seminari in cui docenti universitari presentano la storia delle geometrie non euclidee e i loro rapporti con il mondo fisico. Nel laboratorio vero e proprio utilizzeremo il software di geometria dinamica GeoGebra per esplorare il piano di Poincaré, una realizzazione concreta di geometria non euclidea: incontreremo rette che si avvicinano sempre più senza mai incontrarsi, triangoli in cui la somma degli angoli interni non fa 180 gradi ed altri esempi dello strano (ma reale) mondo non euclideo.


Le scienze della vela

Prof. Lorenzo Freddi
15 ore

Prof. Giorgio Brajnik, Prof. Lorenzo Freddi, Dott. Ivan Scagnetto, Prof. Francesco Trevisan

Il corso consiste in un ciclo di 4-5 lezioni e un’uscita in barca a vela. Dato il tempo limitato a disposizione, le lezioni non pretendono di essere esaustive. Per ogni lezione viene individuato un problema attorno al quale essa si sviluppa con il coinvolgimento attivo degli studenti. Il programma sotto riportato è a titolo provvisorio ed esemplificativo e soggetto a modifiche a cura dei singoli docenti.

Lezione 1: problemi matematici della navigazione
La geometria della sfera. Rotte di minima distanza (ortodromica o geodetica e lossodromica), rotte di minimo tempo. Carte nautiche, proiezioni e coordinate. La proiezione di Mercatore.

Lezione 2: navigazione a vela e carteggio
Il problema della rotta di intercettazione risolto con riga e compasso sulla carta nautica (Teorema di Talete) e analiticamente (Teorema dei seni di Eulero). Imbarcazioni a vela. Cenni di teoria della vela, andature e manovre. Vento, corrente. Materiali: carte nautiche per uso didattico, squadrette nautiche, compassi e matite.

Lezione 3: fisica

Lezione 4: informatica/IoT. IOT applicata alla navigazione a vela
Acquisizione (logging) di dati cinematici (traiettoria e velocità) mediante un sistema di monitoraggio della navigazione realizzato dal laboratorio Uniud Sailing Lab e basato su un Raspberry Pi dotato di GPS, IMU (Inertial Measurement Unit con accelerometri/giroscopi/bussola magnetica) ed alimentato da una batteria; pubblicazione dei dati secondo il paradigma client/server. Collegamento al server e monitoraggio in tempo reale mediante applicazione web per smartphone/tablet/PC. Utilizzo di cartografia elettronica per la visualizzazione dei percorsi dei natanti sia in differita che in tempo reale. Gli studenti impareranno come si avvia un programma server per l’acquisizione e la pubblicazione di dati provenienti da sensori. Inoltre, in tempo reale, potranno monitorare sul proprio telefono le informazioni, imparando a collegarsi al server da un’applicazione web.

Lezione 5: biologia ed ecologia marina
L’ecosistema marino e la sua tutela, responsabilità ambientale.

Lezione 6: laboratorio
Esercitazione a squadre in cui verrà chiesto agli studenti di risolvere un problema (ad esempio di navigazione). Il lavoro di ciascuna squadra potrebbe essere soggetto a una valutazione volta unicamente a stabilire un ordine di precedenza per l’uscita in barca.

Lezione 7: uscita in barca
Saranno programmate alcune uscite in barca a vela a cura della FIV (Federazione Italiana Vela) il cui effettivo svolgimento è subordinato alle condizioni meteo. A ciascuna uscita parteciperà una squadra di 4-5 studenti con l’ordine di precedenza stabilito durante lo svolgimento del laboratorio (Lezione 6).


Realtà e modelli matematici

Prof.ssa Rossana Vermiglio
10 ore

Si vuole accompagnare lo studente in un percorso che va dall’osservazione del fenomeno alla formulazione del modello matematico e alla descrizione della sua dinamica con metodi qualitativi e numerici. L’attenzione sarà principalmente rivolta alle equazioni differenziali ordinarie (sistemi dinamici a tempo continuo) ma l’attività può anche includere le equazioni alle differenze (sistemi dinamici a tempo discreto). Saranno proposti e analizzati dei semplici modelli di dinamica di popolazione senza dimenticare però il ruolo importante svolto dalle equazioni differenziali nella fisica. Il laboratorio intende anche offrire agli insegnanti e agli studenti interessanti spunti per approfondimenti sui modelli matematici in altri contesti applicativi quali epidemiologia, economia, biologia e scienze sociali.

In tal modo lo studente può apprezzare l’uso della matematica come strumento di modellizzazione di fenomeni reali, di riflettere sul concetto di derivata e di confrontarsi con la risoluzione numerica di alcuni modelli utilizzando codici di calcolo (Octave, Matlab). Si confronterà anche con la precisione finita del calcolatore, gli errori e la loro propagazione.


Modelli di programmazione lineare intera per problemi di decisione

Prof.ssa Franca Rinaldi
4 ore

La programmazione lineare intera (PLI) è ad oggi una delle metodologie più generali ed efficaci per la rappresentazione e risoluzione di una ampia gamma di problemi di decisione/ottimizzazione che emergono sia in ambito teorico che applicativo, in particolare nell’organizzazione e gestione di sistemi complessi (sistemi di produzione e distribuzione, sistemi di trasporto, sistemi di telecomunicazioni, servizi sanitari ecc.). Le caratteristiche di un problema di PLI sono semplici da esprimere dal punto di vista matematico; inoltre i pacchetti software attualmente disponibili sono semplici da utilizzare e consentono di risolvere rapidamente istanze di PLI di medie dimensioni.

L’attività del laboratorio sarà focalizzata sul processo di modellizzazione di un problema di decisione/ottimizzazione come problema di PLI, processo che non può essere sistematizzato e che richiede esperienza, intuizione ed un po’ di fantasia. Per questo motivo, verranno dapprima presentati alcuni esempi di modelli per problemi applicativi classici per poi proporre, discutere e analizzare insieme agli studenti nuovi problemi formulati dal docente o dagli studenti stessi. Verrà anche illustrato il linguaggio di generazione di modelli AMPL che consentirà agli studenti di risolvere alcune istanze di ciascun problema considerato.

Il laboratorio sarà preceduto da un seminario introduttivo in cui verranno delineati i principali aspetti teorici ed algoritmici della PLI ed i suoi ambiti classici di applicazione.


Equazioni algebriche di terzo grado

Prof. Raffaele Di Santo
6 ore

La ricerca delle soluzioni di un’equazione polinomiale ha coinvolto i matematici sin dai tempi più antichi. Già gli antichi babilonesi si erano dedicati, ad esempio, alla ricerca delle soluzioni di un’equazione di secondo grado. Ma solo agli inizi del 1500 i matematici N. Tartaglia, G. Cardano e S. Del Ferro fornirono tecniche per la risoluzione di equazioni algebriche di terzo grado. In seguito L. Ferrari dette un procedimento risolutivo per quelle di quarto grado.

In questo laboratorio si cercherà di coinvolgere gli studenti nello scoprire, a piccoli passi e in maniera più autonoma possibile, come, a partire da un’equazione di terzo grado in forma generale, si possa passare ad un’equazione di terzo grado in forma particolare e come, per questa, si possa determinare una soluzione. In seguito si mostrerà sinteticamente il metodo proposto da L. Ferrari per determinare una soluzione di un’equazione di quarto grado.

La storia di come si giunse alla soluzione di queste equazioni è, quindi, di grande interesse. Sono, infatti, coinvolti complessi problemi concettuali che i matematici italiani del XVI secolo risolsero per la prima volta, ma rientrano nel contesto anche intricate ed affascinanti vicende umane ed interpersonali tra i protagonisti. Nel seminario si cercherà, pertanto di offrire un quadro completo facendo precedere all’attività laboratoriale la descrizione del quadro storico.


L’insieme di Cantor

Prof. Raffaele Di Santo
8 ore

Questo laboratorio propone agli studenti un’introduzione teorica iniziale dedicata all’Insieme di Cantor, proposto dal matematico tedesco Georg Cantor (1845-1918) come un esempio di insieme con delle proprietà particolari, e un’esperienza di programmazione individuale che riguarda la rappresentazione grafica di tale insieme. Nella parte teorica si tratta il concetto di cardinalità infinita di un insieme in termini elementari e si descrivono la modalità di costruzione dell’insieme e alcune sue proprietà utilizzando la rappresentazione di un numero decimale in base 3, anche nei calcoli veri e propri.

In seguito allo studente viene richiesto di creare, in maniera più autonoma possibile, il codice che consente di ottenere una rappresentazione grafica della costruzione dell’insieme per passi.


Il concetto di buco nero

Dott. Daniele Pranzetti
6 ore

I buchi neri rappresentano gli oggetti più esotici che esistono nel nostro Universo e sono uno dei principali oggetti di studio della fisica teorica e sperimentale nella ricerca attuale.

Si vuole accompagnare lo studente verso comprensione del concetto di buco nero attraverso un percorso pedagogico dove elementi fisici a matematici connessi fra loro vengono introdotti e spiegati con semplici applicazioni.

In un primo seminario, si parte dal concetto di metrica in spazio piatto, con la distinzione fra direzioni spaziali e temporali; si fa vedere come essa permette la determinazione di diversi tipi di intervalli di lunghezza spazio-temporali. Si introduce poi il concetto di cono luce e come questo descriva la propagazione della luce. Infine si introduce il concetto di tempo proprio per un osservatore che segue una traiettoria di tipo temporale.

Nel corso del laboratorio, si introduce la metrica di Schwarzschild e il concetto di orizzonte; si usano poi le nozioni introdotte nel primo seminario per far determinare agli studenti il rapporto fra l’intervallo di tempo proprio e delle coordinata tempo per un osservatore in moto ad una posizione fissa fuori dall’orizzonte. Lo scopo del laboratorio è quello di mostrare con un conto esplicito come il tempo proprio rallenti più ci si avvicina all’orizzonte del buco nero.

In un secondo seminario finale, si descrive dapprima in maniera semplice le modalità di formazione di un buco nero astrofisico; usando poi la metrica di Schwarzschild introdotta nel corso del laboratorio; si usano le nozioni introdotte nel primo seminario per mostrare come intervalli spazio-temporali di tipo spaziale fuori dall’orizzonte diventino di tipo temporale dentro l’orizzonte e le implicazioni per la propagazione della luce, fino ad introdurre il concetto di singolarità del buco nero.


World Logic Day - 14 gennaio 2025

Prof.ssa Giovanna D'Agostino
4 ore

"L'informatica è il proseguimento della logica con altri mezzi" (G.Gottlob) Questa parafrasi della frase su guerra e politica  del generale prussiano von Clausewitz è ben esemplificata dalla nascita dei moderni computer. Intorno agli   anni trenta del novecento matematici, logici e filosofi si interrogavano sulla nozione di dimostrazione e di algoritmo ed il lavoro di uno di loro, Alan Turing, e' alla base dell' esistenza dei computer come li conosciamo oggi. 

Nel World Logic Day  racconteremo la storia di Turing e della sua "macchina di Turing universale". Dopo un breve intervallo,  i partecipanti verranno divisi in piccoli gruppi per imparare a programmare una macchina di Turing aiutandosi con un  simulatore  al computer. 

L'attività si svolge nella  mattina del 14 gennaio, in occasione del World Logic Day, patrocinato dall'UNESCO. 

Indice

  1. Non tutti gli infiniti sono uguali – Prof. Vincenzo Dimonte (2 ore)
  2. La matematica della fotogrammetria – Prof. Stefano Urbinati (2 ore)
  3. ...scusi prof... ma a cosa servono le equazioni?! – Prof. Dimitri Breda (2 ore)
  4. L'astronomia di Tolomeo – Prof. Paolo Bussotti (2 ore)
  5. Storia e uso dell'astrolabio – Prof. Paolo Bussotti (4 ore)
  6. La modernità della matematica greca: suoi concetti e sua influenza sulla matematica contemporanea – Prof. Paolo Bussotti (2 ore)
  7. Numeri interi, razionali, reali e paradossi di Zenone – Prof. Gianluca Gorni (2 ore)
  8. Equazioni diofantee – Prof.ssa Anna Giordano Bruno (2 ore)


Non tutti gli infiniti sono uguali

Prof. Vincenzo Dimonte
2 ore

Gli insiemi con infiniti elementi si possono confrontare stabilendo se uno è più grande dell’altro, come nel caso degli insiemi finiti? Possiamo trattare l’infinito o gli infiniti come fossero dei numeri e sommarli o moltiplicarli fra di loro? I paradossi dell’infinito implicano davvero contraddizioni? Queste domande hanno posto una sfida non banale ai matematici dei secoli scorsi e solo agli inizi del ‘900 hanno ottenuto una risposta soddisfacente. In questo seminario introdurremo il concetto di infinito da un punto di vista matematico. Percorreremo velocemente la sua storia e come i matematici siano riusciti a risolvere i problemi che il concetto di infinito ha sempre portato con se.

Al termine del laboratorio ci affacceremo su alcuni problemi che guidano la ricerca in teoria degli insiemi nel XXI secolo.


La matematica della fotogrammetria

Prof. Stefano Urbinati
2 ore

La fotogrammetria è una tecnica che permette di ricostruire, attraverso un sufficiente numero di immagini di uno stesso oggetto da più angolazioni, la struttura tridimensionale dell’oggetto stesso. Questa tecnica è utilizzata per la topografia e l’architettura, quanto dalle moderne macchine per la tomografia computerizzata. Spesso questa tecnica è anche conosciuta come ‘ricostruzione 3D’.

Alla base di questo interessante strumento c’è la geometria proiettiva. La presentazione sarà quindi rivolta alla bellezza della geometria proiettiva e alle sue molteplici applicazioni.


...scusi prof... ma a cosa servono le equazioni?!

Prof. Dimitri Breda
2 ore

Partendo da una domanda triviale rivisiteremo l’importanza delle equazioni lineari nella modellizzazione matematica di alcuni problemi che risultano oggi fondamentali nell’era moderna, dai problemi delle code ad internet passando attraverso la compressione di suoni e immagini. Particolare attenzione verrà posta anche ai metodi di risoluzione dei relativi sistemi lineari, passando da aspetti teorici ad elementi computazionali, nel tentativo di dare una risposta concreta ai grandi problemi posti dalle tecnologie che utilizziamo quotidianamente. Il seminario può essere adattato a studenti che abbiano anche solo una conoscenza preliminare dei sistemi di equazioni lineari.


L'astronomia di Tolomeo

Prof. Paolo Bussotti
2 ore

L’incontro è previsto della durata di due ore. Anzitutto sarà tracciato un breve quadro dell’astronomia pretolemaica. Si passerà poi a Tolomeo. Verrà esaminata la figura di Tolomeo come scienziato universale: astronomo, geometra, geografo, astrologo. Ci si concentrerà poi sull’astronomia tolemaica esponendone i principi generali e analizzando, nello specifico, la teoria del moto apparente del Sole e il problema del moto retrogrado dei pianeti. Infine, si valuterà il ruolo di Tolomeo nella grande cultura ellenistica.


Storia e uso dell'astrolabio

Prof. Paolo Bussotti
4 ore

Si tratta di un incontro-laboratorio di quattro ore da svolgere con una o due classi di studenti delle superiori. L’attività sarà divisa in due parti: nelle prime due ore verranno forniti gli elementi-base dell’astronomia di posizione necessari a comprendere come funziona e come si costruisce un astrolabio. Verranno date anche informazioni storiche riguardo all’uso dello strumento. La seconda parte sarà laboratoriale. Con materiale messo da me a disposizione, gli alunni, divisi in gruppi, costruiranno un astrolabio per ciascun gruppo e svolgeranno alcune operazioni con lo strumento.


La modernità della matematica greca: suoi concetti e sua influenza sulla matematica contemporanea

Prof. Paolo Bussotti
2 ore

Quattro elementi fondamentali della matematica moderna sono il concetto di “oggetto astratto”, il pensiero assiomatico, l’uso della dimostrazione e la presenza dell’infinito. Dal punto di vista storico la nozione di oggetto astratto è molto antica: la si ritrova già presso gli egizi. Tuttavia gli altri tre concetti, così centrali nella matematica moderna, hanno tutti un’origine greca. Nell’incontro proposto si analizzerà la genesi di tutti e quattro gli elementi menzionati, focalizzandoci sul modo in cui gli assiomi della geometria greca siano alla base di alcuni nostri concetti cardinali, quali quelli di area di una superficie e di forma e sul modo in cui Archimede introdusse in modo molto moderno il concetto e l’uso dell’infinito in matematica.


Numeri interi, razionali, reali e paradossi di Zenone

Prof. Gianluca Gorni
2 ore

I paradossi di Zenone ci obbligano a chiarirci le idee su come intuire la microstruttura dello spazio e del tempo. Illustreremo tre possibili approcci: atomista, pitagorico e, fra virgolette, realista. Nel gran finale dimostreremo il Teorema di Parmenide: il moto non esiste.


Equazioni diofantee

Prof.ssa Anna Giordano Bruno
2 ore

Dopo una breve panoramica storica sulle equazioni diofantee, impariamo a risolvere le equazioni diofantee lineari in due incognite.

Prerequisiti: piano cartesiano, algoritmo di Euclide e massimo comun divisore.

Indice

  1. Non tutti gli infiniti sono uguali – Prof. Vincenzo Dimonte (2 ore)
  2. La matematica della fotogrammetria – Prof. Stefano Urbinati (2 ore)
  3. Miti e paradossi in salsa matematica: un’introduzione ai teoremi di GödelProf.ssa Giovanna D'Agostino (2 ore)
  4. ...scusi prof...ma a cosa servono le equazioni?! – Prof. Dimitri Breda (2 ore)
  5. L'astronomia di Tolomeo – Prof. Paolo Bussotti (2 ore)
  6. Storia e uso dell'astrolabio – Prof. Paolo Bussotti (4 ore)
  7. La modernità della matematica greca: suoi concetti e sua influenza sulla matematica contemporanea – Prof. Paolo Bussotti (2 ore)
  8. Fattorizzazione unica e geometria – Prof. Pietro Corvaja (2 ore)
  9. Finanza moderna e matematica – Prof. Andrea Molent (2 ore)
  10. Giochi d’azzardo e lotterie: miti, illusioni e la dura realtà – Prof. Giuseppe Lancia (2 ore)
  11. Realtà, modelli matematici ed epidemie – Prof.ssa Rossana Vermiglio (2 ore)
  12. Geometria della fisica e fisica della geometria – Prof. Sebastiano Sonego (2 ore)
  13. Le geometrie non euclidee fra matematica e fisica – Prof. Sebastiano Sonego (2 ore)
  14. Donne e matematica – Prof.ssa Rossana Vermiglio (2 ore)
  15. ...ma quanto vale radice di 5 – Prof. Dimitri Breda (2 ore)
  16. Frattali, felci e fiocchi di neve – Prof. Giovanni Panti (2 ore)
  17. La geometria delle formule – Prof. Pietro Corvaja (2 ore)
  18. Numeri interi, razionali, reali e paradossi di Zenone – Prof. Gianluca Gorni (2 ore)
  19. Dai modelli ai dati e ritorno sulle ali di una farfalla (o era un gabbiano?) – Prof. Dimitri Breda (2 ore)
  20. Tre numeri difficili e una semplice formula – Prof.ssa Giovanna D'Agostino (2 ore)
  21. Caos – Prof. Guglielmo Feltrin (2 ore)
  22. b2-4ac - Prof. Pietro Corvaja (2 ore)

Non tutti gli infiniti sono uguali

Prof. Vincenzo Dimonte
2 ore

L’infinito è ovunque voltiamo la testa: nella pubblicità, nei gioielli, nei tatuaggi, sempre come sinonimo di qualcosa di enormemente ampio e irraggiungibile. È comprensibile che si pensi che sia impossibile da maneggiare. Ma la matematica ha tutti gli strumenti per farlo, e i risultati sono spesso paradossali e sorprendenti. Chi l’avrebbe mai detto, per esempio, che alcuni infiniti sono più grandi di altri infiniti? O che metà di un infinito è uguale a se stesso? Li scopriremo assieme, prendendo a piene mani sia dalla storia (per es. Galileo) che dall’attualità.


La matematica della fotogrammetria

Prof. Stefano Urbinati
2 ore

La fotogrammetria è una tecnica che permette di ricostruire, attraverso un sufficiente numero di immagini di uno stesso oggetto da più angolazioni, la struttura tridimensionale dell’oggetto stesso. Questa tecnica è utilizzata per la topografia e l’architettura, quanto dalle moderne macchine per la tomografia computerizzata. Spesso questa tecnica è anche conosciuta come ‘ricostruzione 3D’. Alla base di questo interessante strumento c’è la geometria proiettiva.

La presentazione sarà quindi rivolta alla bellezza della geometria proiettiva e alle sue molteplici applicazioni.


Miti e paradossi in salsa matematica: un’introduzione ai teoremi di Gödel

Prof.ssa Giovanna D'Agostino
2 ore

In questo seminario vedremo come il mito dell’Idra e il paradosso del mentitore, risalenti agli antichi greci, possano aiutarci a comprendere i concetti di verità e dimostrazione in matematica.


...scusi prof...ma a cosa servono le equazioni?!

Prof. Dimitri Breda
2 ore

Partendo da una domanda triviale rivisiteremo l’importanza delle equazioni lineari nella modellizzazione matematica di alcuni problemi che risultano oggi fondamentali nell’era moderna, dai problemi delle code ad internet passando attraverso la compressione di suoni e immagini. Particolare attenzione verrà posta anche ai metodi di risoluzione dei relativi sistemi lineari, passando da aspetti teorici ad elementi computazionali, nel tentativo di dare una risposta concreta ai grandi problemi posti dalle tecnologie che utilizziamo quotidianamente. Il seminario può essere adattato a studenti che abbiano anche solo una conoscenza preliminare dei sistemi di equazioni lineari.


L'astronomia di Tolomeo

Prof. Paolo Bussotti
2 ore

L’incontro è previsto della durata di due ore. Anzitutto sarà tracciato un breve quadro dell’astronomia pretolemaica. Si passerà poi a Tolomeo. Verrà esaminata la figura di Tolomeo come scienziato universale: astronomo, geometra, geografo, astrologo. Ci si concentrerà poi sull’astronomia tolemaica esponendone i principi generali e analizzando, nello specifico, la teoria del moto apparente del Sole e il problema del moto retrogrado dei pianeti. Infine, si valuterà il ruolo di Tolomeo nella grande cultura ellenistica.


Storia e uso dell'astrolabio

Prof. Paolo Bussotti
4 ore

Si tratta di un incontro-laboratorio di quattro ore da svolgere con una o due classi di studenti delle superiori. L’attività sarà divisa in due parti: nelle prime due ore verranno forniti gli elementi-base dell’astronomia di posizione necessari a comprendere come funziona e come si costruisce un astrolabio. Verranno date anche informazioni storiche riguardo all’uso dello strumento. La seconda parte sarà laboratoriale. Con materiale messo da me a disposizione, gli alunni, divisi in gruppi, costruiranno un astrolabio per ciascun gruppo e svolgeranno alcune operazioni con lo strumento.


La modernità della matematica greca: suoi concetti e sua influenza sulla matematica contemporanea

Prof. Paolo Bussotti
2 ore

Quattro elementi fondamentali della matematica moderna sono il concetto di “oggetto astratto”, il pensiero assiomatico, l’uso della dimostrazione e la presenza dell’infinito. Dal punto di vista storico la nozione di oggetto astratto è molto antica: la si ritrova già presso gli egizi. Tuttavia gli altri tre concetti, così centrali nella matematica moderna, hanno tutti un’origine greca. Nell’incontro proposto si analizzerà la genesi di tutti e quattro gli elementi menzionati, focalizzandoci sul modo in cui gli assiomi della geometria greca siano alla base di alcuni nostri concetti cardinali, quali quelli di area di una superficie e di forma e sul modo in cui Archimede introdusse in modo molto moderno il concetto e l’uso dell’infinito in matematica.


Fattorizzazione unica e geometria

Prof. Pietro Corvaja
2 ore

Un risultato fondamentale in aritmetica, che risale almeno ad Euclide, afferma che ogni numero naturale si fattorizza in modo unico come prodotto di primi. Un analogo teorema vale nell’ambito dei polinomi. Si mostreranno vari punti di vista su questi teoremi e sulla problematica della fattorizzazione unica, con collegamenti alla geometria e topologia.


Finanza moderna e matematica

Prof. Andrea Molent
2 ore

Finanza e matematica: la finanza moderna utilizza in modo determinante la matematica. Teorie matematiche, anche avanzate, fanno parte della preparazione necessaria a coloro che operano sui mercati finanziari mondiali. Si partirà da elementi di matematica finanziaria di base, che utilizzano solo gli strumenti matematici che fanno parte dei programmi delle scuole superiori, per poi passare a prodotti finanziari più complessi: futures, swaps, opzioni. Si presenteranno tali prodotti finanziari cercando di fornire una idea intuitiva delle relative tecniche di valutazione basate sulla teoria della probabilità. Tutto questo ci permetterà di discutere, da un punto di vista matematico, questioni finanziarie di estrema attualità.


Giochi d’azzardo e lotterie: miti, illusioni e la dura realtà

Prof. Giuseppe Lancia
2 ore

Per quanto il fenomeno del gioco sia largamente diffuso nella popolazione, è evidente come non si possa dire altrettanto della comprensione delle nozioni scientifiche alla base del suo funzionamento. Dalla superstizione, alla falsa scienza che propugna (e vende) sistemi infallibili, alla semplice ignoranza e debolezza mentale, il mondo del gioco e dei giocatori appare come quanto di meno razionale sia dato a vedere, soprattutto a fronte dell’enormità di denaro che esso movimenta. In questo seminario ci proponiamo di gettare un po’ di luce, da un punto di vista matematico e scientifico, sulle regole alla base dei giochi d’azzardo, quali ad esempio la teoria della probabilità, il concetto di valore atteso di una scommessa, la varianza, e la legge dei grandi numeri. Il quadro che ne appare dovrebbe far riflettere sulla ragionevolezza o meno di partecipare a certe scommesse.

Lo scopo del seminario, tra aneddoti ed esempi, non è quello di disincentivare al gioco, ma di rendere il giocatore consapevole dei rischi che sta prendendo e delle fregature, a questo punto non più nascoste, alle quali può andare incontro. A seguito della conferenza, o, comunque, in connessione con essa, il professore che avesse scelto questa proposta può sviluppare un’autonoma attività laboratoriale collegata con le stesso ordine di problemi su dei comuni giochi di dadi, o di carte, in modo da render capace lo studente di stimare quanto sarebbe equo pagare (o vincere) per una data scommessa. All’inizio verranno proposti giochi più semplici e in seguito anche più complessi. Nelle ore di laboratorio sarà possibile stimolare gli studenti a stimare le probabilità di vincita o di perdita del gioco.


Realtà, modelli matematici ed epidemie

Prof.ssa Rossana Vermiglio
2 ore

Si vuole mostrare agli studenti il percorso che va dall’osservazione di un fenomeno alla formulazione del modello matematico e alla descrizione della sua dinamica con metodi qualitativi e numerici, con una riflessione sul metodo scientifico. L’attenzione sarà rivolta alle equazioni alle differenze (sistemi dinamici a tempo discreto) e alle differenziali ordinarie (sistemi dinamici a tempo continuo). Saranno proposti e analizzati dei semplici modelli di dinamica di popolazione, offrendo agli insegnati e agli studenti interessanti spunti per approfondimenti sui modelli matematici in vari contesti applicativi quali epidemiologia, biologia e fisica.


Geometria della fisica e fisica della geometria

Prof. Sebastiano Sonego
2 ore

Una delle conseguenze più notevoli della teoria della relatività generale è il ruolo dinamico che essa conferisce alla geometria, che diviene pertanto un’entità fisica a pieno diritto. In questo seminario discuterò il percorso concettuale che conduce a questa affascinante visione del mondo, in cui la geometria influenza il comportamento della materia ed è, a sua volta, da questa influenzata. Presenterò inoltre le nostre conoscenze attuali sulla geometria dello spazio a diverse scale di distanza, e alcune speculazioni su scenari alternativi a quello comunemente accettato.


Le geometrie non euclidee fra matematica e fisica

Prof. Sebastiano Sonego
2 ore

Per oltre duemila anni, molti matematici si sono arrovellati nel tentativo di dimostrare il quinto postulato di Euclide a partire dagli altri. Soltanto all’inizio del XIX secolo si è riconosciuto che ciò non era possibile, e che è necessario distinguere i concetti di “geometria matematica” e di “geometria fisica”. Questa scoperta è stata cruciale nel successivo sviluppo della geometria riemanniana, ed ha avuto importantissime implicazioni nella fisica moderna.


Donne e matematica

Prof.ssa Rossana Vermiglio
2 ore

Il seminario propone una riflessione su stereotipi e pregiudizi di genere nelle materie STEM e in particolare in Matematica, attraverso la presentazione di alcuni profili biografici di illustri donne matematiche da Ipazia a Maryam Mirzakhani e Maryna Viazovska.


...ma quanto vale radice di 5

Prof. Dimitri Breda
2 ore

Con il pretesto di rispondere alla domanda posta nel titolo, in questo seminario intraprenderemo un percorso analitico-computazionale che dal metodo di bisezione ci porterà ad accennare ai cosiddetti frattali di Newton. Il tutto accompagnato dalla discussione di diverse connessioni con elementi di geometria e algebra, arricchita con aspetti storici che ci accompagneranno dalla sezione aurea ai conigli di Fibonacci passando per Egizi e Babilonesi. Il seminario è rivolto a studenti della classi quinte che abbiano già affrontato concetti standard di analisi matematica quali funzioni, limiti e derivate.


Frattali, felci e fiocchi di neve

Prof. Giovanni Panti
2 ore

Un frattale è un insieme che, guardato attraverso una lente di ingrandimento, riproduce se stesso in forma distorta. Sono oggetti molto irregolari nei dettagli, ma molto regolari nel modo in cui questi dettagli si combinano. Ne risulta una compresenza di ordine e caos, che cercheremo di analizzare.


La geometria delle formule

Prof. Pietro Corvaja
2 ore

La matematica spesso si esprime con l’uso di cosiddette formule, e in questo avviene solo per la matematica ela chimica (le formule della fisica sono in realtà formule matematiche). Nella chimica però tutti i simboli hanno un significato fisso.

Spesso l’analisi di formule matematiche rileva una struttura geometrica e tali formule possono essere ricavate, o quantomeno congetturate, a partire da questa struttura geometrica.

Nel seminario si mostrano vari esempi al riguardo.


Numeri interi, razionali, reali e paradossi di Zenone

Prof. Gianluca Gorni
2 ore

I paradossi di Zenone ci obbligano a chiarirci le idee su come intuire la microstruttura dello spazio e del tempo. Illustreremo tre possibili approcci: atomista, pitagorico e, fra virgolette, realista. Nel gran finale dimostreremo il Teorema di Parmenide: il moto non esiste.


Dai modelli ai dati e ritorno sulle ali di una farfalla (o era un gabbiano?)

Prof. Dimitri Breda
2 ore

In questo seminario ripercorreremo le principali tappe di un affascinante viaggio scientifico intrapreso da Edward Lorenz nel secolo scorso. Un viaggio che, guidato dalle applicazioni e dall’avvento dei primi calcolatori elettronici, e grazie ad una solida preparazione matematica del viaggiatore, ha portato alla nascita di quello che oggi chiamiamo “caos deterministico”, con una profonda rivisitazione delle certezze del determinismo. Il seminario è rivolto a studenti che abbiano già affrontato concetti standard di analisi matematica quali funzioni, limiti e derivate. Parleremo anche di equazioni differenziali e autovalori, in modo adeguato anche per coloro che non li hanno mai incontrati.


Tre numeri difficili e una semplice formula

Prof.ssa Giovanna D'agostino
2 ore

Esistono numeri semplici e numeri difficili. A volte dei numeri difficili si possono combinare fra loro in una formula semplice. In questo seminario parleremo di tre numeri molto importanti, pi greco, la costante di Eulero e l’unità immaginaria i, della loro storia e di come si incontrano in una delle formule più belle della matematica.


Caos

Prof. Guglielmo Feltrin
2 ore

Esploreremo il concetto di caos in Matematica. Attraverso esempi concreti, intraprenderemo un viaggio affascinante nel regno dell’imprevedibile, scoprendo che anche i sistemi più semplici possono dare origine a fenomeni sorprendenti.


b2-4ac

Prof. Pietro Corvaja
2 ore

Partendo dalla cosiddetta formula risolutiva per le equazioni di secondo grado, esploriamo il concetto di discriminante e quello di funzione simmetrica di due o più variabili, i reticoli piani, le equazioni di terzo grado, nonché la disuguaglianza tra le medie aritmetica e geometrica.