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Appendix C

Fundamentals of
psychoacoustics

Psychoacoustics is a “discipline within psychology concerned with sound, its
perception and the physiological foundations of hearing” [75]. A few concepts
and facts of psychoacoustics are certainly useful to the sound designer and to
any computer scientist interested in working with sound. Several books provide
a wider treatment of this topic, at different degrees of depth [86, 105, 42, 111].

C.1 The ear

The human ear is usually described as composed of three parts. This system is
schematically depicted in figure 1.

the outer ear: The pinna couples the external space to the ear canal. Its shape
is exploited by the hearing system to extract directional information from
incoming sounds. The ear canal is a tube (length l ≈ 2.6cm, diameter d ≈
0.6cm) closed on the inner side by a membrane called the ear drum. The
tube acts as a quarter-of-wavelength resonator, exciting frequencies in the
neighborhood of f0 = c

4l ≈ 3.3kHz, where c is the speed of sound in air;

the middle ear: It transmits mechanical energy, received from the ear drum,
to the inner ear through a membrane called the oval window. To do so, it
uses a chain of small bones, called the hammer, the anvil, and the stirrup;

the inner ear: It is a cavity, called cochlea, shaped like a snail shell, which is
shown rectified for clarity in figure 1. It contains a fluid and it is divided
by the basilar membrane into two chambers: the scala vestibuli and the
scala timpani. The length of the cochlea is about 3.5cm. Its diameter is
about 2mm at the oval window (base) and it gets narrower at the other
extreme (apex), where a narrow aperture (the helicotrema) allows the two
chambers to communicate. On top of the basilar membrane, the tectorial
membrane sustains about 16, 000 hair cells that pick up the transversal
motion of the basilar membrane and transmit it to the brain.

The vibrations of the oval window excite the fluid of the scala vestibuli. By
pressure differences between the scala vestibuli and scala timpani, the basilar
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Figure 1: Cartoon physiology of the ear

membrane oscillates and transversal waves are propagated. The basilar mem-
brane can be thought of as a string having a decreasing tension as we move from
the base to the apex. This tension changes by about four orders of magnitude
from base to apex. Along a string, the waves propagate at speed

c =

√
T

ρL
=

√
Tension

Linear density
, (1)

and the wavelength associated with the component at frequency f is

λ =
1
f

√
T

ρL
=

c

f
. (2)

The impedance of the tube is z0 =
√

ρLT and, if vmax is the peak value of
transversal velocity, the wave power is

P =
1
2
z0v

2
max =

1
2

√
ρLTv2

max . (3)

While a wave component at frequency f is propagating from the base to the
apex, its wavelength decreases (because tension decreases) and, due to the physi-
cal requirement of power constancy, its amplitude increases. However, this prop-
agation is not lossless, and dissipation increases with the amplitude, so that a
frequency-dependent maximum region will emerge along the basilar membrane
(see figure 2). Since the high frequencies are more affected by propagation losses,
their characteristic resonance areas are cluttered close to the base, while low fre-
quencies are more widely distributed toward the apex. About two thirds of the
length of the cochlea is devoted to low frequencies (about one fourth of the
audio bandwidth), thus giving more frequency resolution to the slowly-varying
components.

C.2 Sound Intensity

Consider a sinusoidal point source in free space. It generates spherical pressure
waves that carry energy. The acoustic intensity is the power by unit surface that
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Figure 2: Cartoon of the transversal velocity pattern elicited by an incoming
pure sine tone

is carried by a wave front. It is a vectorial quantity having magnitude

I =
p2

max

2
1
z0

=
p2

max

2ρc
=

p2
RMS

ρc
, (4)

where pmax and pRMS are the peak and root-mean-square (RMS) values of
pressure wave, respectively, and z0 = ρc = density× speed is the impedance of
air.

At 1000Hz the human ear can detect sound intensities ranging from Imin =
10−12W/m2 (threshold of hearing) to Imax = 1W/m2 (threshold of pain).

Consider two spherical shells of areas a1 and a2, at distances r1 and r2

from the point source. The lossless propagation of a wavefront implies that the
intensities registered at the two distances are related to the areas by

I1a1 = I2a2 . (5)

Since the area is proportional to the square of distance from the source, we also
have

I1

I2
=

(
r2

r1

)2

. (6)

The intensity level is defined as

IL = 10 log10

I

I0
, (7)

where I0 = 10−12W/m2 is the sound intensity at the threshold of hearing. The
intensity level is measured in decibel (dB), so that multiplications by a factor
are turned into additions by an offset, as represented in table C.2. Similarly, the
sound pressure level is defined as

SPL = 20 log10

pmax

p0,max
= 20 log10

pRMS

p0,RMS
(8)
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standing wave
Fletcher-Munson curves
equal-loudness curves
loudness level
phons
loudness
sones
standardized loudness scale

I IL
×1.26 +1
×2 +3
×10 +10

Table C.1: Relation between factors in the linear intensity scale and shifts in
the dB intensity-level scale

where p0,max and p0,RMS are the peak and RMS pressure values at the threshold
of hearing. For a propagating wave, we have that IL = SPL. For a standing
wave, since there is no power transfer and since IL is a power-based measure,
the SPL is more appropriate.

Given a reference tone with a certain value of IL at 1kHz, we can ask a
subject to adjust the intensity of a probe tone at a different frequency until
it matches the reference loudness perceptually. What we would obtain are the
Fletcher-Munson curves, or equal-loudness curves, sketched in figure 3. Each
curve is parameterized on a value of loudness level (LL), measured in phons.
The loudness level is coincident with the intensity level at 1kHz.
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Figure 3: Equal-loudness curves. The parameters express values of loudness level
in phons.

Even though the Fletcher-Munson curves are obtained by averaging the re-
sponses of human subjects, the LL is still a physical quantity, because it refers
to the physical quantity IL and it does not represent the perceived loudness in
absolute terms. In other words, doubling the loudness level does not mean dou-
bling the perceived loudness. A genuine psychophysic measure is the loudness in
sones, which can be obtained as a function of LL by asking listeners to compare
sounds and decide when one sound is “twice as loud” as another. Somewhat ar-
bitrarily, a LL of 40 phons is set equal to 1 sone. Figure 4 represents a possible
average curve that may emerge from an experiment. The standardized loudness
scale (ISO) uses the straight line approximation of figure 4, that corresponds
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Experimental curves similar to that reported in figure 4 show in many cases
significant deviations from (14). For instance, the relation between intensity and
loudness is more similar to

L ∝ 3
√

I , (15)

as three doublings of intensity are needed for approximating one doubling in
loudness.

Power laws such as the (15) are the natural outcome of the so called direct
methods of psychophysical experimentation, where it is the sensation itself that
is the unit for measuring other sensations. Such experimental paradigm was
largely established by Stevens3, and it is the one in use when the experimenter
asks the subject to double or half the perceived loudness of a tone, or when a
direct magnitude production or estimation is used.

C.3 Pitch

Periodic tones elicit a sensation of pitch, thus meaning that they can be ordered
on a scale from low to high. Many aperiodic or even stochastic sounds can elicit
pitch sensations, with different degrees of strength.

If we stick with pure tones for this section, pitch is the sensorial correlate
of frequency, and it makes sense to measure the frequency JND using the tools
of psychophysics. For instance, if a pure tone is slowly modulated in frequency
we may seek for the threshold of modulation audibility. The resulting curve of
average results would look similar to figure 5.
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Figure 5: JND in frequency for a slowly modulated pure tone.

Again, from the curve of figure 5 we notice a significant deviation from the
Weber’s law ∆f ∝ f . The physiological interpretation is that there is more
internal noise in the frequency detection in the very-low range.

If we integrate 1
∆f(f) we obtain a curve such as that of figure 6 that can be

interpreted as a subjective scale for pitch, whose unit is called mel. Convention-
ally 1000 Hz corresponds to 1000 mel. This curve shouldn’t be confused with the

3Stanley Smith Stevens (1906-1973).
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sound
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scales that organize musical height. Musical scales are based on the subdivision
of the musical octave into a certain number of intervals. The musical octave is
usually defined as the frequency range having the higher bound that has twice
the value in Hertz of the first bound. On the other hand, the subjective scale
for pitch measures the subjective pitch relationship between two sounds, and it
is strictly connected with the spatial distribution of frequencies along the basi-
lar membrane. In musical reasoning, pitch is referred to as chroma, which is a
different thing from the tonal height that is captured by figure 6.
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Figure 6: Subjective frequency curve, mel vs. Hz.

So far, we have described pitch phenomena referring to the position of hair
cells that get excited along the basilar membrane. Indeed, the place theory of
hearing is not sufficient to explain the accuracy of pitch perception and some
intriguing effects such as the virtual pitch. In this effect, if a pure tone at fre-
quency f1 is superimposed to a pure tone at frequency f2 = 3

2f1, the perceived
pitch matches the missing fundamental at f0 = f1/2. If the reader, as an ex-
cercise, plots this superposition of waveforms, she may notice that the apparent
periodicity of the resulting waveform is 1/f0. This indicates that a temporal
processing of sound may occur at some stages of our perception. The hair cells
convey signals to the fibers of the acoustic nerve. These neural contacts fire at
a rate that depends on the transversal velocity of the basilar membrane and on
its lateral displacement. The rate gets higher for displacements that go from the
apex to the base, and this creates a periodicity in the firing rate that is multi-
ple of the waveform periodicity. Therefore, the statistical distribution of neural
spikes keep track of the temporal behavior of the acoustic signals, and this may
be useful at higher levels to extract periodicity information, for instance by
autocorrelation processes [86].

Even for pure tones, pitch perception is a complex business. For instance, it is
dependent on loudness and on the nature and quality of interfering sounds [42].
The pitch of complex tones is an overly complex topic to be discussed in this
appendix. It suffices to know that pitch perception of complex tones is linked to
the third (after loudness and pitch) and most elusive attribute of sound, that is
timbre.
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A.8.2 The Fourier Transform

The Fourier transform of y(t), t ∈ R, can be obtained as a specialization of the
Laplace transform in the case that the latter is defined in a region comprising
the imaginary axis. In such case we define14

Y (Ω)
4
= YL(jΩ) , (54)

or, in detail,

Y (Ω) =
∫ +∞

−∞
y(t)e−jΩtdt , (55)

where jΩ indicates a generic point on the imaginary axis. Since the kernel of the
Fourier transform is the complex sinusoid (i.e., the complex eponential) having
radial frequency Ω, we can interpret each point of the transformed function as
a component of the frequency spectrum of the function y(t). In fact, given a
value Ω = Ω0 and considered a signal that is the complex sinusoid y(t) = ejΩ1t,
the integral (55) is maximized when choosing Ω0 = Ω1, i.e., when y(t) is the
complex conjugate of the kernel 15. The codomain of the transformed function
Y (Ω) belongs to the complex field. Therefore, the spectrum can be decomposed
in a magnitude spectrum and in a phase spectrum.

A.8.3 The Z Transform

The domains of functions can be classes of numbers of whatever kind and nature.
If we stick with functions defined over rings, particularly important are the
functions whose domain is the ring of integer numbers. These are called discrete-
variable functions, to distinguish them from functions of variables defined over
R or C, which are called continuous-variable functions.

For discrete-variable functions the operators derivative and integral are re-
placed by the simplest operators difference and sum. This replacement brings a
new definition of transform for a function y(n), n ∈ Z:

YZ(z) =
+∞∑

n=−∞
y(n)z−n, z ∈ Γ ⊂ C . (56)

The transform (56) is called Z transform and the region of convergence is a
ring16 of the complex plane. Within this ring the transform can be inverted.

Example 3. The Z transform of the discrete-variable causal exponential
is17

YZ(z) =
+∞∑

n=−∞
y(n)z−n =

+∞∑
n=0

ez0nz−n =
+∞∑
0

(ez0z−1)n =
1

1− ez0z−1
, (57)

14Often the Fourier transform is defined as a function of f , where 2πf = Ω
15Exercise: find the Fourier transform of the causal complex exponential (48), with s0 =

α + jΩ0, and show that it has maximum magnitude for Ω = Ω0.
16A ring here is the area between two circles and not an algebraic structure.

17The latter equality in (57) is due to the identity

+∞∑
n=0

an =
1

1− a
, |a| < 1, which can be

verified by the reader with a = 1/2.
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representation

and it is convergent for values of z that are larger than e<(z0) in magnitude18.
Similarly to what we saw for continuous-variable functions, the Fourier trans-

form for discrete-variable functions can be obtained as a specialization of the
Z transform where the values of the complex variable are restricted to the unit
circumference.

Y (ω) = YZ(ejω) , (58)

or, in detail,

Y (ω) =
+∞∑

n=−∞
y(n)e−jωn . (59)

In this book, we use the symbol ω for the radian frequency in the case of discrete-
variable functions, leaving Ω for the continuous-variable functions.

###

A.9 Computer Arithmetics

A.9.1 Integer Numbers

In order to fully understand the behavior of several hardware and software tools
for sound processing, it is important to know something about the internal
representation of numbers within computer systems. Numbers are represented
as strings of binary digits (0 and 1), but the specific meaning of the string
depends on the conventions used. The first convention is that of unsigned integer
numbers, whose value is computed, in the case of 16 bits, by the following
formula

x =
15∑

i=0

xi × 2i , (60)

where xi is the i-th binary digit starting from the right. The binary digits are
called bits, the rightmost digit is called least significant bit (LSB), and the
leftmost digit is called the most significant bit (MSB). For instance, we have

01000011001001102 = 21 + 22 + 25 + 28 + 29 + 214 = 17190 , (61)

where the subscript 2 indicates the binary representation, being the usual deci-
mal representation indicated with no subscript.

The leftmost bit is often interpreted as a sign bit: if it is set to one it means
that the sign is minus and the absolute value is given by the bits that follow.
However, this is not the representation that is used for the signed integers. For
these numbers the two’s complement representation is used, where the leftmost
bit is still a sign bit, but the absolute value of a negative number is recovered
by bitwise complementation of the following bits, interpretation of the result as
a positive integer, and addition of one. For instance, with four bits we have

10102 = −(01012 + 1) = −(5 + 1) = −6 . (62)

The two’s complement representation has the following advantages:

18<(x) is the real part of the complex number x
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In order to obtain the signal coming out from a linear system it is sufficient
to apply the convolution operator between the input signal and the impulse
response.

1.2 The Sampling Theorem

In order to perform any form of processing by digital computers, the signals
must be reduced to discrete samples of a discrete-time domain. The operation
that transforms a signal from the continuous time to the discrete time is called
sampling, and it is performed by picking up the values of the continuous-time
signal at time instants that are multiple of a quantity T , called the sampling
interval. The quantity Fs = 1/T is called the sampling rate.

The presentation of a detailed theory of sampling would take too much space
and it would become easily boring for the readership of this book. For a more
extensive treatment there are many excellent books readily available, from the
more rigorous [66, 65] to the more practical [67]. Luckily, the kernel of the theory
can be summarized in a few rules that can be easily understood in terms of the
frequency-domain interpretation of signals and systems.

The first rule is related to the frequency representation of discrete-time vari-
ables by means of the Fourier transform, defined in appendix A.8.3 as a special-
ization of the Z transform:

Rule 1.1 The Fourier transform of a function of discrete variable is a function
of the continuous variable ω, periodic3 with period 2π.

The second rule allows to treat the sampled signals as functions of discrete
variable:

Rule 1.2 Sampling a continuous-time signal x(t) with sampling interval T pro-

duces a function x̂(n)
4
= x(nT ) of the discrete variable n.

If we call spectrum of a signal its Fourier-transformed counterpart, the fun-
damental rule of sampling is the following:

Rule 1.3 Sampling a continuous-time signal with sampling rate Fs produces a
discrete-time signal whose frequency spectrum is a periodic replication of the
spectrum of the original signal, and the replication period is Fs. The Fourier
variable ω for functions of discrete variable is converted into the frequency vari-
able f (in Hz) by means of

ω = 2πfT =
2πf

Fs
. (7)

Fig. 1 shows an example of frequency spectrum of a signal sampled with
sampling rate Fs. In the example, the continuous-time signal had all and only
the frequency components between −Fb and Fb. The replicas of the original
spectrum are sometimes called images.

Given the simple rules that we have just introduced, it is easy to understand
the following Sampling Theorem, introduced by Nyquist in the twenties and
popularized by Shannon in the forties:

3This periodicity is due to the periodicity of the complex exponential of the Fourier trans-
form.
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Figure 1: Frequency spectrum of a sampled signal

Theorem 1.1 A continuous-time signal x(t), whose spectral content is limited
to frequencies smaller than Fb (i.e., it is band-limited to Fb) can be recovered
from its sampled version x̂(n) = x(nT ) if the sampling rate Fs = 1/T is such
that

Fs > 2Fb . (8)

It is also clear how such recovering might be obtained. Namely, by a linear
reconstruction filter capable to eliminate the periodic images of the base band
introduced by the sampling operation. Ideally, such filter doesn’t apply any
modification to the frequency components lower than the Nyquist frequency,
defined as FN = Fs/2, and eliminates the remaining frequency components
completely.

The reconstruction filter can be defined in the continuous-time domain by
its impulse response, which is given by the function

h(t)
4
= sinc(t) =

sin (πt/T )
πt/T

, (9)

which is depicted in fig. 2.
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Figure 2: sinc function, impulse response of the ideal reconstruction filter

Ideally, the reconstruction of the continuous-time signal from the sampled
signal should be performed in two steps:

• Conversion from discrete to continuous time by holding the signal con-
stant in time intervals between two adjacent sampling instants. This is
achieved by a device called a holder. The cascade of a sampler and a
holder constitutes a sample and hold device.
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• Convolution with an ideal sinc function.

The sinc function is ideal because its temporal extension is infinite on both sides,
thus implying that the reconstruction process can not be implemented exactly.
However, it is possible to give a practical realization of the reconstruction filter
by an impulse response that approximates the sinc function.

Whenever the condition (8) is violated, the periodic replicas of the spec-
trum have components that overlap with the base band. This phenomenon is
called aliasing or foldover and is avoided by forcing the continuous-time original
signal to be bandlimited to the Nyquist frequency. In other words, a filter in
the continuous-time domain cuts off the frequency components exceeding the
Nyquist frequency. If aliasing is allowed, the reconstruction filter can not give a
perfect copy of the original signal.

Usually, the word aliasing has a negative connotation because the aliasing
phenomenon can make audible some spectral components which are normally
out of the frequency range of hearing. However, some sound synthesis techniques,
such as frequency modulation, exploit aliasing to produce additional spectral
lines by folding onto the base band spectral components that are outside the
Nyquist bandwidth. In this case where the connotation is positive, the term
foldover is preferred.

1.3 Discrete-Time Spectral Representations

We have seen how the sampling operation essentially changes the nature of the
signal domain, which switches from a continuous to a discrete set of points. We
have also seen how this operation is transposed in the frequency domain as a
periodic replication. It is now time to clarify the meaning of the variables which
are commonly associated to the word “frequency” for signals defined in both the
continuous and the discrete-time domain. The various symbols are collected in
table 1.1, where the limits imposed by the Nyquist frequency are also indicated.
With the term “digital frequencies” we indicate the frequencies of discrete-time
signals.

Nyquist Domain Symbol Unit
[−Fs/2 . . . 0 . . . Fs/2] f [Hz] = [cycles/s]
[−1/2 . . . 0 . . . 1/2] f/Fs [cycles/sample] digital
[−π . . . 0 . . . π] ω = 2πf/Fs [radians/sample] frequencies
[−πFs . . . 0 . . . πFs] Ω = 2πf [radians/s]

Table 1.1: Frequency variables

Appendix A.8.3 shows how it is possible to define a Fourier transform for
functions of a discrete variable. Here we can re-express such definition, as
a function of frequency, for discrete-variable functions obtained by sampling
continuous-time signals with sampling interval T . This transform is called the
Discrete-Time Fourier Transform (DTFT) and is expressed by

Y (f) =
+∞∑

n=−∞
y(nT )e−j2π f

Fs
n . (10)
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Chapter 2

Digital Filters

For the purpose of this book we call digital filter any linear, time-invariant
system operating on discrete-time signals. As we saw in chapter 1, such a system
is completely described by its impulse response or by its (rational) transfer
function. Even though the adjective digital refers to the fact that parameters
and signals are quantized, we will not be too concerned about the effects of
quantization, that have been briefly introduced in sec. 1.6. In this chapter, we
will face the problem of designing impulse responses or transfer functions that
satisfy some specifications in the time or frequency domain.

Traditionally, digital filters have been classified into two large families: those
whose transfer function doesn’t have the denominator, and those whose transfer
function have the denominator. Since the filters of the first family admit a
realization where the output is a linear combination of a finite number of input
samples, they are sometimes called non-recursive filters1. For these systems, it is
more customary and correct to refer to the impulse response, which has a finite
number of non-null samples, thus calling them Finite Impulse Response (FIR)
filters. On the other hand, the filters of the second family admit only recursive
realizations, thus meaning that the output signal is always computed by using
previous samples of itself. The impulse response of these filters is infinitely long,
thus justifying their name as Infinite Impulse Response (IIR) filters.

2.1 FIR Filters

An FIR filter is nothing more than a linear combination of a finite number of
samples of the input signal. In our examples we will treat causal filters, therefore
we will not process input samples coming later than the time instant of the
output sample that we are producing.

The mathematical expression of an FIR filter is

y(n) =
N∑

m=0

h(m)x(n−m) . (1)

In eq. 1 the reader can easily recognize the convolution (26), here specialized to

1Strictly speaking, this definition is not correct because the same transfer functions can be
realized in recursive form

19
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averaging filter
magnitude response
phase response

finite-length impulse responses. Since the time extension of the impulse response
is N + 1 samples, we say that the FIR filter has length N + 1.

The transfer function is obtained as the Z transform of the impulse response
and it is a polynomial in the powers of z−1:

H(z) =
N∑

m=0

h(m)z−m = h(0) + h(1)z−1 + . . . + h(N)z−N . (2)

Since such polynomial has order N , we also say that the FIR filter has order N .

2.1.1 The Simplest FIR Filter

Let us now consider the simplest nontrivial FIR filter that one can imagine, the
averaging filter

y(n) =
1
2
x(n) +

1
2
x(n− 1) . (3)

In appendix B.1 it is illustrated how such filter can be implemented in Oc-
tave/Matlab in two different ways: block processing or sample-by-sample pro-
cessing. The simplest way to analyze the behavior of the filter [97] is probably
the injection of a complex sinusoid having amplitude A and initial phase φ, i.e.
the signal x(n) = Aej(ω0n+φ). Since the system is linear we do not loose any
generality by considering unit-amplitude signals (A = 1). Since the system is
time invariant we do not loose any generality by considering signals with initial
zero phase (φ = 0). Since the complex sinusoid can be expressed as the sum of
a cosinusoidal real part and a sinusoidal imaginary part, we can imagine that
feeding the system with such a complex signal corresponds to feeding two copies
of the filter, the one with a cosinusoidal real signal, the other with a sinusoidal
real signal. The output of the filter fed with the complex sinusoid is obtained,
thanks to linearity, as the sum of the outputs of the two copies.

If we replace the complex sinusoidal input in eq. (3) we readily get

y(n) =
1
2
ejω0n +

1
2
ejω0(n−1) = (

1
2

+
1
2
e−jω0)ejω0n = (

1
2

+
1
2
e−jω0)x(n) . (4)

We see that the output is a copy of the input multiplied by the complex number
( 1
2 + 1

2e−jω0), wich is the value taken by the transfer function at the point
z = ejω0 . In fact, the transfer function (2) can be rewritten, for the case under
analysis, as

H(z) =
1
2

+
1
2
z−1 , (5)

and its evaluation on the unit circle (z = ejω) gives the frequency response

H(ω) =
1
2

+
1
2
e−jω . (6)

For an input complex sinusoid having frequency ω0, the frequency response takes
value

H(ω0) =
1
2

+
1
2
e−jω0 = (

1
2
ejω0/2 +

1
2
e−jω0/2)e−jω0/2 = cos (ω0/2)e−jω0/2 , (7)

and we see that the magnitude response and the phase response are, respectively

|H(ω0)| = cos (ω0/2) (8)
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lowpass filterand
6 H(ω0) = −ω0/2 . (9)

These are respectively the magnitude and argument of the complex number
that is multiplied by the input function in (4). Therefore, we have verified a
general property of linear and time-invariant systems, i.e., sinusoidal inputs give
sinusoidal outputs, possibly with an amplitude rescaling and a phase shift2.

If the frequency of the input sine is thought of as a real variable ω in the
interval [0, π), the magnitude and phase responses become a function of such
variable and can be plotted as in fig. 1. At this point, the interpretation of such
curves as amplification and phase shift of sinusoidal inputs should be obvious.
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Figure 1: Frequency response (magnitude and phase) of an averaging filter

In order to plot curves such as those of fig. 1 it is not necessary to calculate
closed forms of the functions representing the magnitude (8) and the phase
response (9). Since with Octave/Matlab we can directly operate on arrays of
complex numbers, the following simple script will do the job:

global_decl; platform(’octave’);
w = [0:0.01:pi]; % frequency points
H = 0.5 + 0.5*exp(- i * w ); % complex frequency response
subplot(2,2,1); plot(w, abs(H)); % plot the magnitude
xlabel(’frequency [rad/sample]’);
ylabel(’magnitude’);
eval(myreplot);
subplot(2,2,2); plot(w, angle(H)); % plot the phase
xlabel(’frequency [rad/sample]’);
ylabel(’phase [rad]’);
eval(myreplot);

The averaging filter is the simplest form of lowpass filter. In a lowpass filter
the high frequencies are more attenuated than the low frequencies. Another
way to approach the analysis of a filter is to reason directly in the plane of the
complex variable z. In this plane (fig. 2) two families of points are marked: the

2The reader can easily verify that this is true not only for complex sinusoids, but also for
real sinusoids. The real sinusoid can be expressed as a combination of complex sinusoids and
linearity can be applied.
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The three memory words are put in an area organized as a circular buffer.
The input is written to the word pointed by the index and the three preceding
values of the input are read with the three preceding values of the index. At
every sample instant, the four indexes are incremented by one, with the trick of
beginning from location 0 whenever we exceed the length M of the buffer (this
ensures the circularity of the buffer). The counterclockwise arrow indicates the
direction taken by the indexes, while the clockwise arrow indicates the movement
that should be done by the data if the indexes would stay in a fixed position.
In fig. 13 we use small triangles to indicate the multiplications by the filter
coefficients. This is a notation commonly used for multiplications within the
signal flowgraphs that represent digital filters. As a matter of fact, an FIR filter
contains a delay line since it stores N consecutive samples of the input sequence
and uses each of them with a delay of N samples at most. The points where the
circular buffer is read are called taps and the whole structure is called a tapped
delay line.

2.2 IIR Filters

In general, a causal IIR filter is represented by a difference equation where
the output signal at a given instant is obtained as a linear combination of
samples of the input and output signals at previous time instants. Moreover,
an instantaneous dependency of the output on the input is also usually included
in the IIR filter. The difference equation that represents an IIR filter is

y(n) = −
N∑

m=1

amy(n−m) +
M∑

m=0

bmx(n−m) . (24)

Eq. (24) is also called Auto-Regressive Moving Average (ARMA) representation.
While the impulse response of FIR filters has a finite time extension, the impulse
response of IIR filters has, in general, an infinite extension. The transfer function
is obtained by application of the Z transform to the sequence (24). In virtue
of the shift theorem, the Z transform is a mere operatorial substitution of each
translation by m samples with a multiplication by z−m. The result is the rational
function H(z) that relates the Z transform of the output to the Z transform of
the input:

Y (z) =
b0 + b1z

−1 + . . . + bMz−M

1 + a1z−1 + . . . + aNz−N
X(z) = H(z)X(z) . (25)

The filter order is defined as the degree of the polynomial in z−1 that is the
denominator of (25).

2.2.1 The Simplest IIR Filter

In this section we analyze the properties of the simplest nontrivial IIR filter that
can be conceived: the one-pole filter having coefficients a1 = − 1

2 and b0 = 1
2 :

y(n) =
1
2
y(n− 1) +

1
2
x(n) . (26)
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second-order filter Instead of starting from the transfer function or from the difference equation,
in this case we begin by positioning the two poles in the complex plane at the
point

p0 = rejω0 (38)

and at its conjugate point p0
∗ = re−jω0 . In fact, if p0 is not real, the two poles

must be complex conjugate if we want to have a real-coefficient transfer function.
In order to make sure that the filter is stable, we impose |r| < 1. The transfer
function of the second-order filter can be written as

H(z) =
G

(1− rejω0z−1)(1− re−jω0z−1)

=
G

1− r(ejω0 + e−jω0)z−1 + r2z−2
=

G

1− 2 r cosω0z−1 + r2z−2

=
G

1 + a1z−1 + a2z−2
(39)

where G is a parameter that allows us to control the total gain of the filter.
As usual, we obtain the frequency response by substitution of z with ejω in

(31):

H(ω) =
G

1− 2 r cosω0e−jω + r2e−2jω
. (40)

If the input is a complex sinusoid at the (resonance) frequency ω0, the output
is, from the first of (39):

H(ω0) =
G

(1− r)(1− re−2jω0)
=

G

(1− r)(1− r cos 2ω0 + j r sin 2ω0)
. (41)

In order to have a unit-magnitude response at the frequency ω0 we have to
impose

|H(ω0)| = 1 (42)

and, therefore,
G = (1− r)

√
1− 2r cos 2ω0 + r2 . (43)

The frequency response of this normalized filter is reported in fig. 16 for r = 0.95
and ω0 = π/6. It is interesting to notice the large step experienced by the phase
response around the resonance frequency. This step approaches π as the poles
get closer to the unit circumference.

It is useful to draw the pole-zero diagram in order to gain intuition about
the frequency response. The magnitude of the frequency response is found by
taking the ratio of the product of the magnitudes of the vectors that go from
the zeros to the unit circumference with the product of the magnitudes of the
vectors that go from the poles to the unit circumference. The phase response
is found by taking the difference of the sum of the angles of the vectors start-
ing from the zeros with the sum of the angles of the vectors starting from the
poles. If we move along the unit circumference from dc to the Nyquist rate,
we see that, as we approach the pole, the magnitude of the frequency response
increases, and it decreases as we move away from the pole. Reasoning on the
complex plane it is also easier to figure out why there is a step in the phase
response and why the width of this step converges to π as we move the pole
toward the unit circumference. In the computation of the frequency response it
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Figure 16: Frequency response (magnitude (a) and phase (b)) of a two-pole IIR
filter
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Figure 17: Couple of poles on the complex plane

is clear that, in the neighborhood of a pole close to the unit circumference, the
vector that comes from that pole is dominant over the others. This means that,
accepting some approximation, we can neglect the longer vectors and consider
only the shortest vector while evaluating the frequency response in that region.
This approximation is useful to calculate the bandwidth ∆ω of the resonant fil-
ter, which is defined as the difference between the two frequencies corresponding
to a magnitude attenuation by 3dB, i.e., a ratio 1/

√
2. Under the simplifying

assumption that only the local pole is exerting some influence in the neighbor-
ing area, we can use the geometric construction of fig. 18 in order to find an
expression for the bandwidth [67]. The segment P0A is

√
2 times larger than

the segment P0P . Therefore, the triangle formed by the points P0AP has two,
orthogonal, equal edges and AB = 2P0P = 2(1− r). If AB is small enough, its
length can be approximated with that of the arc subtended by it, which is the
bandwidth that we are looking for. Summarizing, for poles that are close to the
unit circumference, the bandwidth is given by

∆ω = 2(1− r) . (44)

The formula (44) can be used during a filter design stage in order to guide the
pole placement on the complex plane.
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5.1.3 LPC Modelling

As explained in section 4.2, the Linear Predictive Coding can be used to model
piecewise stationary spectra. The LPC synthesis proceeds according to the feed-
forward scheme of figure 5. Essentially, it is a subtractive synthesis algorithm
where a spectrally-rich excitation signal is filtered by an allpole filter. The exci-
tation signal can be the residual e that comes directly from the analysis, or it is
selected from a code book. Alternatively, we can make use of voiced/unvoiced
information to generate an excitation signal that can either be a random noise
or a pulse train. In the latter case, the pulse repetition period is derived from
pitch information, available as a parameter.

a  , ...,   a1 P

Excitation
Synthesis

v/uv

pitch

e

RMS amplitude

Allpole

Filter

Figure 5: LPC Synthesis

Between the analysis and synthesis stages, several modifications are possible:

• pitch shifting, obtained by modification of the pitch parameter;

• time stretching, obtained by stretching the window where the signal is
assumed to be stationary;

• data reduction, by model order reduction or residual coding.

5.2 Time-domain models

While the description of sound is more meaningful if done in the spectral domain,
in many applications it is convenient to approach the sound synthesis directly
in the time domain.

5.2.1 The Digital Oscillator

We have seen in section 5.1.1 how a complex sound made of several sinusoidal
partials is conveniently synthesized by the FFT−1 method. If the sinusoidal
components are not too many, it may be convenient to synthesize each partial
by means of a digital oscillator.

From the obvious identity

ejω0(n+1) = ejω0ejω0n , (6)

said ejω0n = xR(n)+jxI(n), it is evident that the oscillator can be implemented
by one complex multiplication, i.e., 4 real multiplications, at each time step:

xR(n + 1) = cos ω0xR(n)− sin ω0xI(n) (7)
xI(n + 1) = sin ω0xR(n) + cos ω0xI(n) . (8)
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wavetable
wavetable oscillator
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The initial amplitude and phase can be imposed by scaling the initial phasor
ejω00 and adding a phase shift to its exponent. It is easy to show2 that the
calculation of xR(n + 1) can also be performed as

xR(n + 1) = 2 cos ω0xR(n)− xR(n− 1) , (9)

or, in other words, as the free response of the filter

HR(z) =
1

1− 2 cos ω0z−1 + z−2
=

1(
1− e−jω0z−1

)(
1− ejω0z−1

) . (10)

The poles of the filter (10) lay exactly on the unit circumference, at the limit of
the stability region. Therefore, after the filter has received an initial excitation,
it keeps ringing forever.

If we call xR1 and xR2 the two state variables containing the previous samples
of the output variable xR, an initial phase φ0 can be imposed by setting3

xR1 = sin (φ0 − ω0) (11)
xR2 = sin (φ0 − 2ω0) . (12)

The digital oscillator is particularly convenient to perform sound synthesis
on general-purpose processors, where floating-point arithmetics is available at
no additional cost. However, this method for generating sinusoids has two main
drawbacks:

• Updating the parameter (i.e., the oscillation frequency) requires comput-
ing a cosine function. This is a problem for audio rate modulations, where
to compute a modulated sine we need to compute a cosine at each time
sample.

• Changing the oscillation frequency changes the sinusoid amplitude as well.
Therefore, some amplitude control logic is needed.

5.2.2 The Wavetable Oscillator

The most classic and versatile approach to the synthesis of periodic waveforms
(sinusoids included) is the cyclic reading of a table where a waveform period is
pre-stored. If the waveform to be synthesized is a sinusoid, symmetry consid-
erations allow to store only one fourth of the period and play with the index
arithmetic to reconstruct the whole period.

Call buf[] the buffer that contains the waveform period, or wavetable. The
wavetable oscillator works by circularly accessing the wavetable at multiples of
an increment I and reading the wavetable content at that position.

If B is the buffer length, and f0 is the frequency that we want to generate
at the sample rate Fs, the increment has to be set to

I =
Bf0

Fs
. (13)

2The reader is invited to derive the difference equation 9
3The reader can verify, using formulas (29–32) of appendix A, that xR(0) = sin φ0, given

xR(−1) = xR1 and xR(−2) = xR2.


